
Field theories for kinetic growth models

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

1985 J. Phys. A: Math. Gen. 18 L773

(http://iopscience.iop.org/0305-4470/18/13/008)

Download details:

IP Address: 129.252.86.83

The article was downloaded on 31/05/2010 at 08:56

Please note that terms and conditions apply.

View the table of contents for this issue, or go to the journal homepage for more

Home Search Collections Journals About Contact us My IOPscience

http://iopscience.iop.org/page/terms
http://iopscience.iop.org/0305-4470/18/13
http://iopscience.iop.org/0305-4470
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


J .  Phys. A: Math. Gen. 18 (1985) L773-L780. Printed in Great Britain 

LETTER TO THE EDITOR 

Field theories for kinetic growth models 

David Elderfield 
The Blackett Laboratory, Imperial College of Science and Technology, Prince Consort Road, 
London SW7 2BZ, UK 

Received 5 June 1985 

Abstract. Field theories for kinetic growth models, such as DLA or the Eden model, are 
formulated using simple reaction-diffusion master equations. Our approach, based on 
Poisson transform techniques, allows us to specify the stochastic fluctuations exactly. We 
are therefore, for the first time in an ideal position to study mean-field approximations, 
fluctuations and possibly the renormalisation group. 

Models for irreversible kinetic growth such as the Eden model (Eden 1961) and the 
diffusion limited aggregation model (DLA) (Witten and Sander 1981, 1983) have in 
recent years attracted a great deal of attention. Physical realisations of these and other 
intrinsically irreversible processes arise in many important areas, notable amongst 
which are reaction-diffusion models (Schlogl 1972, Elderfield and Vvedensky 1985a), 
biological pattern formation (Meinhardt 1982), epidemic processes with immunisation 
(Cardy 1983) and automata (Wolfram 1983). In this letter we show how, starting from 
a reaction-diffusion master equation for the Eden model and DLA, one can derive an 
exact field theoretical representation. Given such a description, one is then for the 
first time in an ideal position to study mean-field approximations, fluctuations and 
possibly the renormalisation group and scaling. Our analysis complements, clarifies 
and extends the phenomenological approach of Parisi and Zhang (1985, PZ), who 
used phenomenological equations for the density and first correlation function to infer 
an underlying stochastic dynamics. At the mean-field (or deterministic) level of 
approximation the two approaches lead to qualitatively similar predictions; however, 
there are important differences when one considers the fluctuation corrections. Our 
field theory, being an exact representation of a physically motivated master equation 
for the ‘microscopic’ dynamics, would therefore seem to be a better starting point for 
the systematic study of irreversible kinetic growth at macroscopic scales. 

Let us first consider the Eden model. Briefly, this model describes a process in 
which an introduced seed grows on a lattice by creating particles at nearby sites, which 
then in turn grow. Steps which would lead to a multiply occupied site are excluded. 
Defining x ,  to be the number of particles at the site i, one is therefore led to consider 
the reaction scheme 

k xi + xi+xj 
2 x i  1 xi. 

Here the first step describes the growth process (i, j nearest neighbours) whilst the 
second quickly corrects errors due to multiple occupancy ( e  >> k). Associated with this 
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reaction is a master equation 
N a 

-P({x,}, t ) =  k C xj(P(X1,. . . , x i e l , .  . . , xN, t ) - P ( { x j } ,  t ) )  
a t  i , j= l  

NN 

N 
+ e  C x ~ ( x ~ + I ) P ( x ~ , .  . . , x , + I , .  . .,xN, c) -x~(x~-I )P({x~},  t )  (3) 

i = l  

where P(xl, x2,. . . , xN,  t )  is the probability of finding { x i }  particles at time t. As an 
initial condition we have 

To derive in a simple manner the field theoretical representation for the Eden 
model it is helpful to first transform the master equation (3) into a Fokker-Planck 
form using a Poisson transformation (Gardiner and Chaturvedi 1977, Gardiner 1983, 
Elderfield 1985a). Introducing a quasi-probability f ( { n i } ,  t )  via 

where for simplicity we consider only the real Poisson representation (dp (  n) = da,  Ed c 
%), one finds on integrating by parts that (3) may be rewritten in the Fokker-Planck 
form: 

N N 
t ) ) .  ( 6 )  

at  
NN 

The strength of the Poisson transformation lies in two notable features: first, one 
obtains a simple Fokker-Planck equation (no ad hoc truncations), and second the 
equal time correlations can easily be recovered via the connection formula 

i # j #  ... 

or 

(7) 

Non-equal time connection formula also exist; however, the structure is more complex 
(Elderfield 1985a). In particular, notice that if p ( i )  is the probability of finding a 
particle at i, and p ( i , j )  the probability of finding particles at i, j ,  then (8) reflects in a 
very simple way the necessary consistency criterion 

P ( i ,  i )  = P ( i )  (9) 
forthe simplest continuum limit (a i j+  S ( r ) ,  ( n ( r ) n ( S ) ) - e x p ( - ~ * . l r - s l ) ,  Elderfield and 
Vvedensky (1985b)). 

Given the Fokker-Planck equation ( 6 ) ,  it is now, despite the multiplicative nature 
of the underlying stochastic force, a relatively straightforward task to derive a field 
theoretical representation. Adopting the approach of Elderfield ( 1985a, b), Langouche 
et al (1979) and Elderfield and Vvedensky (1985a), which corresponds to a variant of 
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the Martin-Siggia-Rose formalism (MSR, de Dominicis and Peliti 1978), o?e can show 
that the response/correlation functions are generated by a functional Z({ I ,  I } )  defined 
as follows: 

N T 

z({[ I } )  J [da]  5 [dd] 6(a, (0)  - ao) n 6(ai(o))  exp( J d t ( S +  f’+ la)). (10) 
i = 2  0 

The Lagrangian 2’ takes the form (no truncation) 
N N 

S=i d,(%- (Dkjaj-tIjkea~)(1+idj) 
& = I  at j = 1  

i, j ” 
otherwise 

D, = 

and as usual one obtains the correlation functions through the relations 

with their natural generalisations, provided T > t, t ’ ,  . . . , the observation times. Associ- 
ated with causality and normalisation there are fundamental identities of the typical 
form 

(‘i(t)) = 0 

(Si( t ) U j (  t ’ ) )  = 0 t 2 t’. 

Readers familiar with the MSR formalism will observe that there is no ‘Jacobian’ factor 
in (1 l) ,  a point discussed by many authors (Langouche et a1 1979, Leschke and Schmutz 
1976). Only recently we have shown that for multiplicative stochastic forces only the 
chosen operator ordering/temporal discretisation is consistent with the given Fokker- 
Planck description? (Elderfield 1985b). Notice also that we have modified the initial 
condition (4), preferring instead 

It is clear, however, that the self-correction mechanism (2) should quickly eliminate 
any discrepancy. 

Given (1 l ) ,  a natural continuum limit presents itself. Fourier transforming the 
nearest-neighbour coupling D, one has in d spatial dimensions 

so that large distance physics, qa<< 1, where a is the lattice spacing, is controlled by 
an effective Lagrangian of the form 

t We choose the ordering for which the path integral exhibits the most natural ‘integration by parts’ property. 
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Here we have introduced densities p ( r )  = a i / a d ,  p^(r) = Gi and effective couplings 

1 ;=---a m 
i = k d  (17) 

d ; = e a .  

Our Lagrangian (16) should be compared with that of Parisi and Zhang (1985), who 
suggest the following Reggeon-like Lagrangian: 

2’Eden,PZ({& 4 ) )  = i I drd [ 4( r ) (  m- {6[( a‘V)’+ l]+( r )  - ;+’(r)) - i&$’( r ) + (  

where the nonlinear coupling is chosen phenomenologically to give a bias against 
multiple occupancy. 

At the mean level of approximation, the models (16) and (18) are qualitatively 
similar. In our case one obtains a relation of the form 

41 
(18) 

a t  ) 

O=----- dYEden-ap(r, t ) - i [ ( ~ ~ ) z + l ] ~ ( r ,  t )+;pz(r,  t )  (19) ap a t  

since normalisation ensures ( p ^ )  = 0 (13) and then the density p = x i / a d  follows from 
the connection formula (8). Explicitly one finds that the density p satisfies the equation 
of motion 

* ( r ,  t )  = L[(ZV)~+  l]p(r, t )  - ;pZ(r, t). (20) a t  

Given the initial conditions (4) (or (14)), one finds that the cluster grows in the first 
instance via 

until the nonlinearity evident in (20) becomes important. In high dimensions one 
would not expect saturation to occur, so (21) implies 

M =  drd(p(r ,  t))-e‘td/’ I 
whence for clusters of average mass M, the mean square size (R’) satisfies 

(R’)=ln M. (23) 
in agreement with Parisi and Zhang (1984, 1985). 

On the other hand, when one studies the fluctuations or corrections to the mean-field 
(or deterministic) growth equation (20), there are important differences. Consider for 
example the Langevin equations associated with (16) and (18): 

ap= k’[(a’V)’+ l]P(r)-@’(r)+i d r ’ d { 2 ~ [ ( a ’ V ) 2 + 1 ] ~ - $ 2 } ~ 2 ~ ( r ’ )  (24) a t  I 
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Here the Ito prescription for the noise [ ( r ,  t )  is to be understood (Gardiner 1983). 
Three regimes are evident: first, outside of the growing cluster the multiplicative nature 
of the stochasticity ensures that the fluctuations vanish, then as one enters the cluster 
they grow in strength and then for our model they subside again when saturation 
occurs. In direct contrast for the PZ description (25), which is based on a study of the 
flutuations about the unstable vacuum ( ( c $ ) = O )  the third regime is not found due 
essentially to truncation errors. To recover our result PZ would have to propose a 
more extensive phenomenology, so our approach, firmly based on a very simple master 
equation (only two adjustable couplings), would appear to off er significant advantages. 
Moreover, our field theory in Poisson coordinates is essentially an exact representation 
of the reaction-diffusion model, so the properties of the fluctuations are fully deter- 
mined. 

Let us now finally consider the DLA model. In this model growth occurs by capture 
of a diffusing particle, and steps leading to a multiply occupied cluster site are excluded. 
Defining xi to be the number of particles at site i belonging to the cluster, and dj the 
number of diffusers at site j ,  one is led to consider the following reaction scheme: 

k 
D i + X j -  X i + X j  i , j N N ; p i i = p j i  (26) 

2xi - xi e 

P.. 
Di Dj ( 2 7 )  

I 
Di + X i  - Xi. 

Here the first step describes the growth process in which a diffuser Di is captured by 
the cluster, and we again have a correction reaction to avoid multiple occupation. The 
second describes the diffusion of { Di} and must be supplemented by a source on some 
large sphere centred on the seeded site in order to ensure that the growth continues 
to mature. Lastly, the third process is included to hinder the diffusion of the { D i }  into 
the interior of the cluster, so that the growth can be diffusion limited for any values 
of k > 0. Associated with this reaction scheme is a master equation: 
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(28) 

where P ( x l ,  . . . , xN, dl, . . . , dN, t )  is the probability of finding { x i }  cluster particles and 
{ d i }  diffusers at time t. At t = 0 we introduce a seed at the origin and throughout 
the process we supply a flux of diffusers. Adopting a Poisson transform description by 
introducing a quasi-probability via 

leads to the Fokker-Planck equation 

~ ( a i + d ( { a i } ,  { 4 i l ,  t ) )  (30) 

and thence to a field theoretical representation with a Lagrangian of the form 

%LA({& a, 4,41) 

where 

Here &, a describe the growing cluster and 6, 4 the diffusers. As one might have 
expected, DLA is rather more complicated than the Eden model ( 1 1 ) .  Taking the 
simplest continuum limit by taking the leading non-local terms as before, we obtain 
the effective Lagrangian 
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C= Mad 

p’ = 2pd 

e‘= ead 

i= lad. 

Analysing (32), we first observe that at the mean-field level 

(33) 

* ( r ,  t )  = &(r,  t)[(tv)’+ l]p(r, t )  - zpz(r, t )  (34) 

(35) 

at  

ad 
- ( r ,  t )  = - k ( r ,  t)[(iV)’+l]p(r, t)+p’(iV)’d(r, t )  
d t  

where p(r ,  t), d(r, t)  are the densitits of the cluster particles and the diffusers, respec- 
tively. By contrast PZ suggest the form 

2 ( r ,  t )  = Cp(r, t ) [ ( i ~ ) ’ +  l]p(r, t )  (36) 

(37) 

a t  

o = Lp(r, t)[(iv)’+ l]p(r, t )  -p’(iV)‘p(r, t )  

where p( r )  is the probability of a diffuser colliding with the existing cluster. To recover 
this physically appealing form we must choose boundary conditions such that d ( r )  = 0 
and drop both the error correction interaction (2Xi + Xi) and diffusion limiting reaction 
(Di + X i  + X i ) .  It is therefore quite possible that the predictions of (33) and (34) will 
be quite different, even at the mean-field level. To pake  contact with the non-local 
field theory proposed by PZ we observe that the field 8 in (32) can be integrated exactly 
out of the generating function, to obtain a delta function whose argument is the 
deterministic equation (35). One is therefore led to a non-local field theory of the form 

= i  J” d r ‘ [ ~ ( r ) ( ~ P ( . ) - ( & ( ,  {P})[(iV’)+11P(r)-e‘P2(r)} 

pDLA({6 ,  P I )  



L780 Letter to the Editor 

where d ( r ,  { p } )  satisfies (35) ( p  = p )  with the appropriate boundary conditions. This 
form can then be usefully compared with that of PZ, who propose 

~ D , * , P Z ( { Z ,  41) = i 1 drd[ &r)(?(r) - b ( r ,  W)C(a‘V)’+ 1 1 4  -iZ’c.,4(.)] 

(39) 

where p ( r ,  (4)) satisfies (37) (4  = p ) .  Again, as in the Eden model, we see that the 
fluctuations described by (38) and (39) are rather different in character. 

To conclude, we have shown how field theories can be derived for the Eden model 
and DLA using simple reaction-diff usion master equations. Our approach using Poisson 
techniques is exact, so that the stochastic element of these models is determined with 
no ambiguity. The phenomenological equations of Parisi and Zhang (1985) would 
seem to be correct only in mean-field theory or in the vicinity of the ‘unstable vacuum’. 
In regard to the general philosophy of using reaction-diffusion models we note that 
for example in the Eden model the essential error correction reaction (2X + X) leads 
at time t > 0 to a distriution of cluster masses m in direct contrast to the original Eden 
model (Eden 1961) for which t = M. To compare, for example, the mean square cluster 
size we must first eliminate t in terms of M, a procedure which we assume leads to 
universal forms for the mass dependence. In support of this assertion we note that in 
this way we do recover the known results for the infinite dimensional Eden model (see 
(19) et seq). 

I would like to thank Dr J A Olive, P Goldbart and P Mottishaw for helpful 
comments and the SERC for support. 
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